Hadoop高级教程:HDFS架构
最新学讯:近期OCP认证正在报名中,因考试人员较多请尽快报名获取最近考试时间,报名费用请联系在线老师,甲骨文官方认证,报名从速!
我要咨询Hadoop高级教程:HDFS架构,HDFS是一个具有高度容错性的分布式文件系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。
HDFS的架构如图所示,总体上采用了master/slave架构,主要由以下几个组件组成:Client、NameNode、Secondary、NameNode和DataNode。下面分别对这几个组件进行介绍。
(1)Client
Client(代表用户)通过与NameNode和DataNode交互访问HDFS中的文件。Client提供了一个类似POSIX的文件系统接口供用户调用。
(2)NameNode
整个Hadoop集群中只有一个NameNode。它是整个系统的“总管”,负责管理HDFS的目录树和相关的文件元数据信息。这些信息是以“fsimage”(HDFS元数据镜像文件)和 “editlog”(HDFS文件改动日志)两个文件形式存放在本地磁盘,当HDFS重启时重新构造出来的。此外,NameNode还负责监控各个DataNode的健康状态,一旦发现某个DataNode宕掉,则将该DataNode移出HDFS并重新备份其上面的数据。
(3)Secondary NameNode
Secondary NameNode最重要的任务并不是为NameNode元数据进行热备份,而是定期合并fsimage和edits日志,并传输给NameNode。这里需要注意的是,为了减小NameNode压力,NameNode自己并不会合并fsimage和edits,并将文件存储到磁盘上,而是交由Secondary NameNode完成。
(4)DataNode
一般而言,每个Slave节点上安装一个DataNode,它负责实际的数据存储,并将数据信息定期汇报给NameNode。DataNode以固定大小的block为基本单位组织文件内容,默认情况下block大小为64MB。当用户上传一个大的文件到HDFS上时,该文件会被切分成若干个block,分别存储到不同的DataNode;同时,为了保证数据可靠,会将同一个block以流水线方式写到若干个(默认是3,该参数可配置)不同的DataNode上。这种文件切割后存储的过程是对用户透明的。