专业只做数据库实训和认证的品牌机构

微信公众号新浪微博
免费咨询电话:400-0909-964
当前位置: 网站首页 > Hadoop > Hadoop课程 > Hadoop基础教程:YARN基本组成结构

Hadoop基础教程:YARN基本组成结构

文章来源: 更新时间:2016/7/12 17:56:56

在线老师点击咨询:

最新学讯:近期OCP认证正在报名中,因考试人员较多请尽快报名获取最近考试时间,报名费用请联系在线老师,甲骨文官方认证,报名从速!

我要咨询

YARN是Hadoop 2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceManager和每个应用程序特有的ApplicationMaster。其中ResourceManager负责整个系统的资源管理和分配,而ApplicationMaster负责单个应用程序的管理。

YARN基本组成结构

YARN总体上仍然是Master/Slave结构,在整个资源管理框架中,ResourceManager为Master,NodeManager为Slave,ResourceManager负责对各个NodeManager上的资源进行统一管理和调度。当用户提交一个应用程序时,需要提供一个用以跟踪和管理这个程序的ApplicationMaster,它负责向ResourceManager申请资源,并要求NodeManger启动可以占用一定资源的任务。由于不同的ApplicationMaster被分布到不同的节点上,因此它们之间不会相互影响。在本小节中,我们将对YARN的基本组成结构进行介绍。

图2-9描述了YARN的基本组成结构,YARN主要由ResourceManager、NodeManager、ApplicationMaster(图中给出了MapReduce和MPI两种计算框架的ApplicationMaster,分别为MR AppMstr和MPI AppMstr)和Container等几个组件构成。

1. ResourceManager(RM)

RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。

(1) 调度器

调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。

(2) 应用程序管理器

应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。

2. ApplicationMaster(AM)

用户提交的每个应用程序均包含一个AM,主要功能包括:

与RM调度器协商以获取资源(用Container表示);

将得到的任务进一步分配给内部的任务;

与NM通信以启动/停止任务;

监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。

当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster,我们将在第8章对其进行介绍。此外,一些其他的计算框架对应的AM正在开发中,比如Open MPI、Spark等。

3. NodeManager(NM)

NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求。

4. Container

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。需要注意的是,Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。截至本书完成时,YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。

本文地址:http://www.cuug.com.cn/hadoop/kecheng/12456714044.html 转载请注明!


在线预约 抢先报名 获取课程排期

Oracle培训机构

金牌讲师<>

冉乃纲-老师CUUG金牌讲师
冉老师 CUUG金牌讲师 Oracle及RedHat高级讲师、Unix/Linux 资深专家...[详细了解老师]

免费咨询上课流程 客服在线中

陈卫星-老师CUUG金牌讲师
陈老师 CUUG金牌讲师 精通Oracle管理、备份恢复、性能优化 11年Ora...[详细了解老师]

免费咨询上课流程 客服在线中

选学校如何选择适合自己的学校

CUUG -CHINA UNIX USER GROUP,是国际UNIX组织UNIFORUM的中国代表,是国内悠久的专业UNIX培训机构,被誉为中国UNIX 的摇篮。多年来,以提高教学质量为本,强调素质教育,积极引进、消化国外的新技术,有效的结合中国....[详情]

一站式服务(从入学到就业一帮到底)

入学

学习

就业

实操

食宿
地址:北京市海淀区田村山南路35号院17号楼
课程咨询:010-59426307 010-59426319 400-0909-964
企业服务:137 1818 8639(陈经理)
部分信息来源于网络,如有错误请联系指正!
版权所有@北京神脑资讯技术有限公司 (CUUG,中国UNIX用户协会) Copyright 2016 ALL Rights Reserved 京ICP备11008061号-1